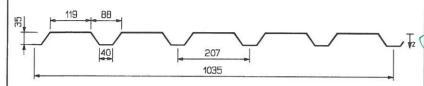
Aluminium- Trapezprofil TP 35-207 Anlage 4.1 zum Prüfbescheid **ALS TYPENENTWURF** in baustatischer Hinsicht geprüft. Querschnitts- und Bemessungswerte nach DIN EN 1999-1-4 Prüfbescheid Nr. T14-205 Profiltafel in Positivlage Landesdirektion Sachsen Maße in mm, Radien R= 4,9 mm Landesstelle für Bautechnik Leipzig, den 16.12.2014 FREISTA Bearbeiter: SACHSEN 1035 Nennwert der Spannung an der 0,2 % Dehngrenze $R_{00.2} = 180 \text{ N/mm}^2$, Zugfestigkeit $R_m = 180 \text{ N/mm}^2$ 200 N/mm Maßgebende Querschnittswerte Normalkraftbeanspruchung Grenzstützweiten 13) Eigenlast Nenn-Biegung 11) blech-Einfeld-Mehrfelddicke nicht reduzierter Querschnitt wirksamer Querschnitt 12) träger träger I-eff A_g t $\mathbf{Z}_{\mathrm{eff}}$ A_{eff} Lgr \mathbf{z}_{g} \mathbf{L}_{gr} kN/m² cm4/m cm²/m mm cm cm²/m cm m 0,70 0,023 9,55 12,77 8,19 1,42 1,18 2,83 1,43 1,70 0,80 0,026 11,48 15,56 9,35 1,42 1,18 3.62 1,43 1,69 0,90 0,029 13,42 18,39 10.52 1,42 1,18 4,50 1,43 1,69 1.00 15,44 0,033 21,22 11,69 1,42 1,18 5,44 1,43 1,68 Schubfeldwerte Grenzzustand der Tragfähigkeit 18) Grenzzustand der Gebrauchstauglichkeit 17) Lasteinleitung t T_{t,Rk} 22) F_{tRk}²¹⁾ füra≥ K, 14) 15) T_{Rk,g} 16) K*, 15) K* 15) $K_3^{(19)}$ T_{b.Ck} $\mathsf{T}_{\mathsf{Rk},\mathsf{I}}$ 130 mm 280 mm kN/m 10⁻⁴·m/kN 10⁻⁴·m²/kN 10⁻⁴·1/kN 10⁻⁴·m²/kN kN/m kN/m kN/m kN kN Normalbefestigung: Verbindung in jedem Untergurt Sonderbefestigung: Verbindung mit 2 Schrauben oder verstärkter Unterlegscheibe in jedem Untergurt 20) a) Blechdicke: Minustoleranz kleiner als 5% der Nenndicke. Weitere Fußnoten siehe Beiblatt 1/2 bzw. 2/2

Aluminium- Trapezprofil


TP 35-207

Querschnitts- und Bemessungswerte nach DIN EN 1999-1-4

Profiltafel in

Positivlage

Maße in mm, Radien R= 4,9 mm

Anlage 4.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T14-205 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 16.12.2014

Nennwert der Spannung an der 0,2 % Dehngrenze R_{p0,2} = 180 N/mm², Zugfestigkeit R_m = 200 N/mm² (กิ

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5) 7)												
blech- dicke	ment	100000000000000000000000000000000000000	lauf- kraft ⁶⁾	Quer-						Kı	eisinter	aktion					
dicke		agontan		kraft	Stützmomente							Zw	ischenau	ıflagerkr	äfte		
			I _{a2} = 40 mm		I _{a,B} = 10 mm I _{a,B} = 60 mm		I _{a,B} = 120 mm		I _{a,B} = 10 mm		l _{a,B} = 60 mm		I _{a,B} = 120 mm				
t	M _{c,Rk,F}	R _w	Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	
mm	kNm/m	kN/m kN/m			kNm/m									/m			
0,70	0,790	2,67	4,04		0,813	0,788	0,813	0,788	0,813	0,788	5,33	5,33	9,33	9,33	12,12	12,12	
0,80	0,995	3,45	5,17	n m	1,025	0,993	1,025	0,993	1,025	0,993	6,89	6,89	11,88	11,88	15,38	15,38	
0,90	1,212	4,32	6,41	n.m.	1,250	1,212	1,250	1,212	1,250	1,212	8,63	8,63	14,70	14,70	18,95	18,95	
1,00	1,431	5,28	7,77		1,484	1,439	1,484	1,439	1,484	1,439	10,55	10,55	17,77	17,77	22,83	22,83	
													0				

Reststützmomente 8)

	l _{a,i}	_в = 10 m	im	l _{a,E}	= 60 m	m	l _{a,E}	=120 m	ım	Reststützmomente M _{R,Rk}			
t	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}				
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m				
							_			M _{R,Rk} =	0	für L≤min L	
										M _{R,Rk} = _	L – mi max L –	n L min L ⋅ max M _{R,}	
										M _{R,Rk} = r	max M _{R,k}	für L≥max L	

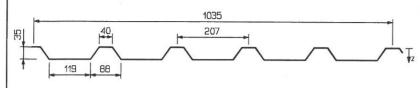
Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Nenn- F blech- dicke	Feldmo-	Ve	rbindung	g in jeder	n anliege	enden Gı	urt	Verbindung in jedem 2. anliegenden Gurt						
	ment	Endauf- lagerkraft		M/\	/- Intera	ktion		Endauf- lagerkraft	M/V- Interaktion					
t	M _{c,Rk,F}	$R_{w,Rk,A}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	$R^0_{Rk,B}$	$R_{w,Rk,B}$	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,70	0,788	19,23	-	0,790	-	-	19,23	9,61	-	0,395	-	-	9,61	
0,80	0,993	25,11	-	0,995	-	-	25,11	12,56	-	0,498	-	_	12,56	
0,90	1,212	31,29	-	1,212	-	-	31,29	15,64	_	0,606	-	_	15,64	
1,00	1,439	34,76	-	1,431	-	-	34,76	17,38	-	0,716	-	-	17,38	

Fußnoten siehe Beiblatt 1/2

Aluminium- Trapezprofil TP 35-207 Anlage 4.3 zum Prüfbescheid ALS TYPENENTWURF Querschnitts- und Bemessungswerte nach DIN EN 1999-1-4 in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T14-205 Profiltafel in Negativlage Landesdirektion Sachsen Maße in mm, Radien R= 4,9 mm Landesstelle für Bautechnik Leipzig, den 16.12.2014 1035 Leiter: FREISTAA Bearbeiter: 207 SACHSEN 119 88 Nennwert der Spannung an der 0,2 % Dehngrenze $R_{p0.2}$ = 180 N/mm², Zugfestigkeit R_m = Maßgebende Querschnittswerte Grenzstützweiten 13) Eigenlast Normalkraftbeanspruchung Nenn-Biegung 11) blech-Einfelddicke Mehrfeldnicht reduzierter Querschnitt wirksamer Querschnitt 12) träger träger I⁺ eff t $\boldsymbol{A}_{\text{eff}}$ I-eff g Zg Z_{eff} Lar \mathbf{L}_{gr} kN/m² mm cm4/m cm²/m cm²/m cm cm 0,70 0,023 12,77 9,55 8,19 1,42 2,32 2,83 1,43 1,80 0,80 0,026 15,56 11,48 9,35 1,42 2,32 3,62 1,43 1,81 0.90 0,029 18,39 13,42 10,52 1,42 2,32 4.50 1.43 1,81 1,00 0,033 21,22 15,44 11,69 1,42 2.32 5,44 1,43 1,82 Schubfeldwerte Grenzzustand der Tragfähigkeit 18) Grenzzustand der Gebrauchstauglichkeit 17) Lasteinleitung t K₂^{14) 15)} T_{t,Rk} 22) F_{t,Rk} 21) K, 14) 15) für a ≥ K*, 15) $K_3^{19)}$ T_{b,Ck} K* 15) $\mathsf{T}_{\mathsf{Rk},\mathsf{g}}$ $T_{\rm Rk,I}$ 130 mm 280 mm mm kN/m 10⁻⁴·m/kN 10⁻⁴·m²/kN 10⁻⁴·1/kN 10⁻⁴·m²/kN kN/m kN/m kN/m kN Normalbefestigung: Verbindung in jedem Untergurt Sonderbefestigung: Verbindung mit 2 Schrauben oder verstärkter Unterlegscheibe in jedem Untergurt 20) a) Blechdicke: Minustoleranz kleiner als 5% der Nenndicke. Weitere Fußnoten siehe Beiblatt 1/2 bzw. 2/2

Aluminium- Trapezprofil


TP 35-207

Querschnitts- und Bemessungswerte nach DIN EN 1999-1-4

Profiltafel in

Negativlage

Maße in mm, Radien R= 4,9 mm

Anlage 4.4 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T14-205 Landesdirektion Sachsen

Leipzig, den 16.12.2014 Leiter: Bearbeiter

FREISTAAT SACHSEN

Nennwert der Spannung an der 0,2 % Dehngrenze $R_{p0,2}$ = 180 N/mm², Zugfestigkeit R_m =

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5) 7)												
blech- dicke	ment		Endauf- lagerkraft ⁶⁾			Kreisinteraktion											
dicke		agonidit		kraft	Stützmomente							Zw	ischenau	ıflagerkr	äfte		
		l _{a1} = 10 mm	l _{a2} = 40 mm		I _{a,B} = 10 mm		I _{a,B} = 6	I _{a,B} = 60 mm		I _{a,B} = 120 mm		I _{a,B} = 10 mm		I _{a,B} = 60 mm		20 mm	
t	M _{c,Rk,F}	R _w	,Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	
mm	kNm/m	kN	l/m	kN/m	kNm/m								kN	/m			
0,70	0,788	2,67	4,04	1.19542	0,815	0,790	0,815	0,790	0,815	0,790	5,33	5,33	9,33	9,33	12,12	12,12	
0,80	0,993	3,45	5,17	n.m.	1,027	0,995	1,027	0,995	1,027	0,995	6,89	6,89	11,88	11,88	15,38	15,38	
0,90	1,212	4,32	6,41	11.111.	1,250	1,212	1,250	1,212	1,250	1,212	8,63	8,63	14,70	14,70	18,95	18,95	
1,00	1,439	5,28	7,77		1,476	1,431	1,476	1,431	1,476	1,431	10,55	10,55	17,77	17,77	22,83	22,83	
													11	70			
													1				

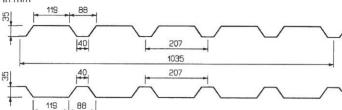
Reststützmomente 8)

t	l _{a,t}	₃ = 10 m	m	l _{a,E}	$_{3} = 60 \text{ m}$	m	l _{a,E}	=120 m	m	Reststützmomente M _{R,Rk}			
	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}				
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m				
										$M_{R,Rk} = 0$	für L≤min L		
										$M_{R,Rk} = \frac{L}{max}$. – min L x L – min L		
										M _{R,Rk} = max	$M_{R,k}$ für $L \ge max L$		

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)

Maria Same	Feldmo-	Verbindun	ng in jede	em ablieg	enden G	Gurt mit K	Verbindung in jedem anliegenden Gurt 9)							
blech- dicke	ment	Endauf- lagerkraft		Kre	isintera	ktion		Endauf- lagerkraft		M/\	/- Intera	ktion		
t	M _{c,Rk,F}	$R_{w,Rk,A}$	M° Rk,B	M _{c,Rk,B}	${\mathsf R}^{\circ}_{_{Rk,B}}$	R _{w,Rk,B}	$V_{w,Rk}$	$R_{w,Rk,A}$	M° Rk,B	M _{c,Rk,B}	R° _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	
mm	kNm/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	
0,70	0,790	4,04	0,813	0,788	8,09	8,09	-	19,23	-	0,788	-	7=	19,23	
0,80	0,995	5,17	1,025	0,993	10,34	10,34	-	25,11	-	0,993	-	- 1	25,11	
0,90	1,212	6,41	1,250	1,212	12,82	12,82	-	31,29	-	1,212	-	-	31,29	
1,00	1,431	7,77	1,484	1,439	15,53	15,53	-	34,76	-	1,439	-	-	34,76	

Fußnoten siehe Beiblatt 1/2


Aluminium- Trapezprofil

TP 35-207

Durchknöpftragfähigkeit nach DIN EN 1999-1-4

Profiltafel in Positiv- und Negativlage

Maße in mm

Anlage 4.5 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T14-205 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 16.12.2014

Leiter: FREISTAABearbeiter:

Nennwert der Spannung an der 0,2 % Dehngrenze R_{p0,2} = 180 N/mm², Zugfestigkeit kNm = 200 N/mm² | 10 N/mm²

Aufnehmbare Durchknöpfkraft $Z_{\rm Rk}$ in kN pro Verbindungselement (Schraube) in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. $^{1)}$ ²⁾

Varhindung	t= 0,7	'0 mm	t= 0,8	0 mm	t= 0,9	90 mm	t= 1,0	0 mm		-
Verbindung	d = 16	d = 19	-	-						
	0,728	0,794	0,832	0,907	0,936	1,02	1,04	1,13	-	-
	0,728	0,794	0,832	0,907	0,936	1,02	1,04	1,13	-	-
	0,728	0,794	0,832	0,907	0,936	1,02	1,04	1,13	-	-

1) Durchknöpfkraft: $F_{p,Rd} = \alpha_L \cdot \alpha_M \cdot \alpha_E \cdot Z_{Rk} / \gamma_{M3}$ $\gamma_{M3} = 1,25$

mit α_L = Abminderungsbeiwert α_L zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN EN 1999-1-4, Tabelle 8.1 (α_L = 1,0 bei Verbindungen am Endauflager oder im Obergurt)

 $\alpha_{_{\rm M}}$ = Abminderungsbeiwert $\alpha_{_{\rm M}}$ für Schrauben mit Aluminiumdichtscheiben siehe DIN EN 1999-1-4, Tabelle 8.2

 $\alpha_{\rm E}^{}$ = Abminderungsbeiwert $\alpha_{\rm E}^{}$ zur Berücksichtigung der Anordnung der Verbindung nach DIN EN 1999-1-4, Tabelle 8.3

2) Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.